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1. The code that we have written is, as I pointed out already, a complete code that can be used to solve 
real problems---or as real as the assumption of a two-dimensional flow allows for. Before a numerical 
code can be used to solve problems it is, however, necessary to gain some familiarity with how it works 
and how accurate the solution can be expected to be.

DNS of Multiphase Flows — Simple Front Tracking

In this lecture we apply our code to a few 
problems and examine its performance. We will, 
specifically, look at

• A falling drop and its collision with a no-slip wall

• A rising bubble and its interaction with a no-slip 
wall

• The Rayleigh-Taylor instability in a domain with 
full slip vertical walls

2. Here we test the code on three problems. First we examine a falling drop, similar to the problem 
used to test the code, except with a larger density difference. We then examine a rising bubble, which 
can be set up by simply switching the material parameters, and then we simulate the Rayleigh-Taylor 
instability where a heavy fluid falls into a lighter one. The last one requires minor changes in the code to 
account for the different interface shape. 

DNS of Multiphase Flows — Simple Front Tracking

We usually do our simulations in arbitrary computations units 
but report the results in non-dimensional units. For multi fluid 
flows we often encounter the following non dimensional 
numbers, where d and U stand for a length and a velocity 
scale. Symbols for the various physical quantities follow the 
usual convention.

Reynolds:Ohnsorge:

Weber: Morton:

Archimedes:

Froude:Eötvös:
(or Bond)

Capillary:
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A rising bubble
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Rayleygh-Taylor Problem
—————————– LECTURE 8 ——————————————–
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3. In numerical simulations it is often convenient to work with parameters of the order of unity, or as 
close to unity as possible. Thus, a square computational domain is of dimensions one by one, density is 
one and so on. We often refer to these values as computational units. To compare with physical values 
and experimental results we use the appropriate non-dimensional numbers. Those can often be though 
of as representing the ratio of forces, length scales or time scales and any introductory fluid dynamics 
textbook has extended discussion of those. Here we only list a few of those that often show up in 
simulations of multiphase or interfacial flows.



DNS of Multiphase Flows

A Falling Drop 
Hitting a Wall

4. We start with the falling drop. We have already presented results for a falling drop using a 32 by 32 
grid. Here we will look at that problem again, but to make it slightly more interesting we increase the 
ratio of the density of the drop to the ambient fluid by ten. Although many multiphase flows are found 
in high-pressure environments where the density of air is much higher than atmospheric density, many 
experimental studies are done under atmospheric conditions. Thus, high-density ratios are often of 
relevance.

DNS of Multiphase Flows — Simple Front Tracking

For a falling drop, as well as a rising bubble, the velocity can be 
written as a function of the various parameters specifying the 
problem, as well as time

Notice that we include gravity multiplied by the density difference, 
sine that is the effective buoyancy force. Using the diameter d, 
drop density, and density difference times gravity, as the repeated 
variables we find that the non-dimensional relationship is:

Or

where 

0.9. ADVECTING INTERFACES-INTRO 25

V

C

=
1

A

Z

(u, v)da =
1

A

Z

⇣@xu

@x
,
@yv

@y

⌘

da (35)

=
1

A

Z

r · (xu, yv)da =
1

A

I

(v · n)xds

V

C

=
1

A

Z

vda =
1

A

Z

r · (xv)da =
1

A

I

(v · n)xds

V

C

=
dX

C

dt

S =

I

ds

Nondimensional Numbers

Oh =
µp
⇢�d

Re = ⇢dU

µ

N =
⇢�⇢gd3

µ2
Ca = µU

�

We =
⇢dU2

�
M = �⇢gµ

4

⇢

2
�

3

Eo = Bo =
�⇢gd2

�
Fr = ⇢U

2

�⇢gd

Re =
⇢dU

µ

Ca =
µU

�

M =
�⇢gµ4

⇢2�3

Fr =
⇢U2

�⇢gd

⌧ =

s

t2�⇢
d

g

⇢d

r =
⇢
d

⇢
o

m =
µ
d

µ
o

For a falling drop or rising bubble:

U = f(⇢
d

, µ
d

,�⇢g,�, d, ⇢
o

, µ
o

, t) (36)

⇢U2

�⇢gd
= f

 

⇢�⇢gd3

µ2
,
�⇢gd2

�
,
⇢
d

⇢
o

,
µ
d

µ
o

,

s

t2�⇢g

⇢d

!

(37)

Fr = f(N,Eo, r,m, ⌧) (38)

Fr = Const. U = Const.

s

�⇢gd

⇢
(39)

Drop falling onto a wall
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5. For the falling drop the diameter of the drop, its density, and gravity, surface tension and viscosity, as 
well as the density and viscosity of the ambient fluid, completely specify the problem. Sometimes the 
density and viscosity of the ambient fluid play smaller roles, particularly if the drop falls only a short 
distance. Generally, the evolution also depends on time. Notice that we include gravity multiplied by 
the density difference, since that is the effective buoyancy force. Taking the drop diameter, the drop 
density, and gravity multiplied by the density difference, as the repeated variables we find that the 
problem is governed by two non-dimensional numbers, the ratios of the densities and the viscosities, 
and time. The results, also made non-dimensional by the repeated variables, are therefore a function of 
these numbers. Thus, the velocity of the drop, represented by the Froude number, or velocity divided 
by the density difference, gravity and the drop diameter, is a function of the Eotvos and the Archimedes 
numbers, the density and viscosity ratios and for unsteady problems it is also a function of the 
appropriately non-dimensional time.

DNS of Multiphase Flows — Simple Front Tracking

We can select other repeated variables to obtain other 
relationships, but in all cases the problem is specified by 
two non-dimensional numbers, plus the ratio of the 
densities and viscosities. The particular non-dimensional 
numbers selected usually depend on the various limiting 
cases we want to explore.  

Sometimes we can ignore the dependency on the viscosity 
or surface tension, in which case the dynamics depends 
only on one non-dimensional number. If both can be 
ignored the problem is even simpler and is described by 
one non dimensional number being equal to a constant.

6. Before moving on we note that the importance of non-dimensional numbers goes far beyond just 
allowing us to run our simulations in any units we fancy. Often they can help us to identify limiting cases 
where we can ignore certain effects, thus simplifying our studies. For drops, it is often found that the 
effects of viscosity are small, once the Archimedes number is high enough, at least for short enough 
time. Thus, we would expect that once our N is high enough so that the results have stopped changing, 
we do not need to increase it further. Since computing very low viscosity can be difficult, or at least 
time consuming, this simplifies our studies. Similar observations can be made about surface tension, 
particularly once it is high enough.
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%===============================================================
Lx=1.0; Ly=1.0; gx=0.0; gy=-100.0; sigma=10; % Domain size and
rho1=0.1; rho2=2.0; m1=0.01; m2=0.2;      % physical variables
unorth=0; usouth=0; veast=0; vwest=0; time=0.0; 
rad=0.15; xc=0.5; yc=0.7;          % Initial drop size and location

%-------------------- Numerical variables ----------------------
nx=32; ny=32; dt=0.001; nstep=200; maxit=200; maxError=0.001; beta=1.5; Nf=100;
This gives the following non-dimensional numbers:

Galileo Number

Eörtvös Number

This is the problem that we have been using to test our code, except here 
we will take the density and viscosity ratios to be larger. The physical and 
numerical parameters are specified in the first few lines of the code
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Property ratios

7. Except for the density and viscosity of the ambient gas, we use the parameters used already. Those 
are specified at the beginning of the code. Thus Lx and Ly are one, gx is zero but gy is negative 100, 
the density of the ambient fluid is 0.1 and the drop density is 2. Similarly, the viscosity of the ambient 
fluid is 0.01 and the drop viscosity is 0.2. Surface tension is 10. The tangent velocities on all four 
boundaries are zero. The drop radius is 0.15 and it is initially located at x = 0.5 and y = 0.7. We start by 
using a grid with 32 by 32 pressure control volumes and a time step of 0.001. We will follow the 
solution for 200 time steps, or up to time 0.2. For the pressure equation we specify an error of 0.001, 
but we also set the maximum number of iterations to 200. 

DNS of Multiphase Flows

Simulation of a 
drop that falls 
onto a rigid wall 
and bounces 
slightly

N=256.5
Eo=1.71
ρb/ρl=20
µb/µl=20

A 32 by 32 grid.

8. For a 32 by 32 grid the code runs fast enough so that it can be run interactively and the drop 
observed as it falls. The evolution is very similar to what we saw earlier for the lower density ratio. The 
drop deforms slightly as it falls, flattens as it collides with the wall, rebounds slightly and then settles on 
the wall.
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For initial checks of the code, we can use relatively benign 
parameters, where we do not expect numerical difficulties 
and the resolution required for convergence is modest. 
Then we ask:

Does it look right?

Is the solution as symmetric as it should be?

Does rotating or flip the problem give the same solution?

Can we test some aspects of the code using analytical 
solutions?

Does the solution converge under grid refinement?

9-1. If we do everything correctly, we expect the numerical solution to be an approximation to an exact 
solution of the governing equations. At this point, however, we do not know how accurate our solution 
is or, for that matter, if it is correct. Assuming that our code runs, there are two main reasons that the 
answer may not be correct. The first is programming errors and the second is numerical errors. Our 
goal is to eliminate the first and understand the second. For the first part it is convenient to work with 
“benign” parameters, such as a small density ratio and modest values of viscosity and surface tension, 
where we are reasonably certain that we will not run into any numerical difficulties. If we have an 
analytical solution then we can, of course, compare the results with it. In most cases an analytical 
solution is, however, only available for simple special situations, such as a spherical drop in Stokes flow, 
that only tests part of the code. In many cases we can use a technique called the method of 
manufactured solutions, and although it is a great way to check codes, it is a bit of an over kill here. 
Thus, we are limited to a relatively modest number of things to check.
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For initial checks of the code, we can use relatively benign 
parameters, where we do not expect numerical difficulties 
and the resolution required for convergence is modest. 
Then we ask:

Does it look right?

Is the solution as symmetric as it should be?

Does rotating or flip the problem give the same solution?

Can we test some aspects of the code using analytical 
solutions?

Does the solution converge under grid refinement?

9-2. First of all, does the solution look correct? If it does not, the probability of an error is far higher 
than that we have discovered an unexpected behavior. Secondly, is the solution as symmetric as we 
expect it to be? What about if we let gravity point in the opposite direction? Or to the left or right? 
Does the solution still look the same? Finally, does the solution converge under grid refinement, where 
we change both the spatial and the temporal resolution? If we are using benign parameters, it should 
converge quickly. For the codes that we have presented so far we have done each of those tests for the 
falling droplet. 
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Looking at how the velocity and the marker function evolve in 
time is usually the first step in examining the results. In many 
cases, however, we desire a more quantitative description of 
the evolution. This is useful for

• Assessing the convergence of the solution as the numerical 
parameters, such as the grid resolution, are varied

• Quantifying how the solution changes as the physical 
parameters describing the problem are changed

The diagnostic variables, or the quantities of interest, can be 
defined in several ways, but here we focus only on the simplest 
ones, such as the area of the drop and the location and 
velocity of its centroid

10. While checking the code for errors is usually a one-time task, examining the convergence must be 
done for every new problem that we simulate. Before doing that for the falling drop problem, we need 
to decide how we evaluate convergence. Looking at the velocity and the marker function and how they 
evolve in time is certainly the first step, but usually we desire a more quantitative description of the 
evolution. Such description is not only useful to assess the convergence as the numerical parameters, 
such as the grid resolution are varied, but also to describe how the solution changes as the physical 
parameters are changed. The diagnostic variables, or the quantities of interest, can be defined in 
several ways, but for our purpose we focus only on the simplest ones, such as the area of the drop and 
the location and velocity of its centroid.
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The area of the drop should be constant since the flow is 
incompressible, and monitoring the area serves as a check 
on the accuracy of the computations.

To compute the area as well s several other quantities of 
interest it is often useful to convert the elementary 
definition as a volume or area integral to a surface integral 
since surface integrals can be found with a high degree of 
accuracy. Thus, the area is given by:
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Area of drop

11. For our problem we know that the volume, or area in our case, should be conserved since the flow 
is incompressible. We also expect the centroid of the drop in the horizontal direction to remain 
unchanged. Thus, these are two obvious quantities to monitor. The centroid in the vertical direction 
does, obviously, change but it also is an obvious quantity to monitor, as is the centroid velocity. Thus, 
here we will examine how the drop area and the location and velocity of the centroids evolve with time. 
These quantities can be computed in different ways, but here we integrate over the interface. The 
droplet volume is defined as the volume integral of the interior of the drop. In two-dimensions this is an 
area integral and to convert it into an integral over the surface of the drop we first note that unity can 
be written as half the divergence of the position vector. That is, the x derivative of x plus the y 
derivative of y is two. Using the divergence theorem the volume integral can now be written as a 
surface integral. Notice that we could have used either the x derivative of the horizontal component or 
the y derivative of the vertical component, but using the average avoids biasing the results in either 
direction. 
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The velocity of the drop centroid can be found by 
differencing the location of the centroid

Centroid of drop

The velocity of the drop centroid can also be found by by 
integrating over the boundary, but this is usually less accurate.

Other elementary quantities of interest include the interface 
length which is found by
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Nondimensional Numbers

Oh =
µp
⇢�d

Re = ⇢dU

µ

N =
⇢�⇢gd3

µ2
Ca = µU

�

We =
⇢dU2

�
M = �⇢gµ

4

⇢

2
�

3

Eo = Bo =
�⇢gd2

�
Fr = ⇢U

2

�⇢gd

For a falling drop or rising bubble:
U = f(⇢, µ,�⇢g,�, d) (36)

TODO

⇢U2

�⇢gd
= f

⇣⇢�⇢gd3

µ2
,
�⇢gd2

�

⌘

(37)

Fr = f(N,Eo) (38)

Fr = Const. U = Const.

s

�⇢gd

⇢
(39)

Drop falling onto a wall

N =
⇢�⇢gd3

µ2
=

2⇥⇥1⇥ 1000.33

0.012
= 5.4⇥ 104 (40)

Eo =
�⇢gd2

�
=

1⇥ 100⇥ 0.32

10
= 1.0⇥ 10�7 (41)

A rising bubble

N =
⇢�⇢gd3

µ2
=

2⇥⇥1⇥ 1000.33

0.012
= 5.4⇥ 104 (42)

Eo =
�⇢gd2

�
=

1⇥ 100⇥ 0.32

10
= 1.0⇥ 10�7 (43)

Rayleygh-Taylor Problem
—————————– LECTURE 8 ——————————————–

12. The centroid of the drop is defined as the volume integral of the position vector divided by the 
volume, and the volume integral can be rewritten as a surface integral by recognizing that the position 
vector is half the divergence of a vector whose components are the coordinates squared. The centroid 
velocity, defined as the average velocity of the drop, can be computed by simply taking the time 
derivative of the centroid location. It can also be found as a surface integral, but generally we find that 
to be less accurate, particularly for low resolutions. The total interface length (or surface area in three-
dimension) is also an important quantity of interest, since it is directly related to the surface energy. This 
can be found in a straightforward way.
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%================= DIAGNOSTICS =============================
  Area(is)=0; CentroidX(is)=0; CentroidY(is)=0; Time(is)=time;

  for j=1:Nf, Area(is)=Area(is)+...
      0.25*((xf(j+1)+xf(j))*(yf(j+1)-yf(j))-(yf(j+1)+yf(j))*(xf(j+1)-xf(j)));  
    CentroidX(is)=CentroidX(is)+...
      0.125*((xf(j+1)+xf(j))^2+(yf(j+1)+yf(j))^2)*(yf(j+1)-yf(j));
    CentroidY(is)=CentroidY(is)-...
      0.125*((xf(j+1)+xf(j))^2+(yf(j+1)+yf(j))^2)*(xf(j+1)-xf(j));
  end
  CentroidX(is)=CentroidX(is)/Area(is);CentroidY(is)=CentroidY(is)/Area(is);

% plot(Time,Area,'r','linewidth',2); axis([0 dt*nstep 0 0.1]);
% set(gca,'Fontsize',18, 'LineWidth',2)
% T1=Time;A1=Area;CX1=CentroidX;CY1=CentroidY;
% T2=Time;A2=Area;CX2=CentroidX;CY2=CentroidY;

Here we use integration over the front to compute the area 
and the centroids. The code to do so is:

13. In the current code we collect the various diagnostics as the code runs so we need to add a few 
lines to do that at the end of the time loop. We also have included a few commands to plot these 
quantities, as well as to save them under a different name. This is useful when we are doing grid 
refinement or parameter studies and want to rerun the code several times and compare the results.

DNS of Multiphase Flows

0 0.05 0.1 0.15 0.2
0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0 0.05 0.1 0.15 0.2
-10

-8

-6

-4

-2

0

2

4

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 by 12832 by 32 64 by 64

The front, the velocity field, and the marker function at time 0.2
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Results for three grids

14. The top three frames show the front, the velocity field and the marker function for three different 
resolutions, 32 by 32, 64 by 64, and 128 by 128 grids, at time 0.2, when the drop has collided with the 
wall and rebounded slightly. Although the droplet shape is similar in all three frames, it is also obvious 
that there are slight differences, particularly between the first two frames. The three plots at the 
bottom show the area of the drop, the distance of the drop centroid from the bottom wall and the 
centroid velocity, versus time, for all three runs. The black line is for the lowest resolution and the red 
line is for the finest one. On the coarsest grid the drop looses a little bit of mass, particularly when it 
first collides with the wall, but overall the results agree well, particularly for the two finest grids. 
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A Rising 
Bubble 

Colliding with a 
Wall

15. Our code is, at least in principle, capable of solving a wide range of problems involving two 
immiscible fluids. It is, however, not written as a multipurpose code, so in most cases we need to 
change the code to do a new problem. The simplest change is to examine bubbles, or light drops, 
instead of heavy drops. To do so we only need to change the material properties so that buoyancy 
drives the bubble upwards, instead of down. 
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A bubble is the inverse of a drop, where a light fluid blob 
moves in a heavy liquid. We will make the domain twice as 
long, so that the bubble will have time to reach an 
approximate steady state before hitting the top wall

Galileo Number

Eörtvös Number

26

A rising bubble

N =
⇢�⇢gd3

µ2
=

2⇥ 1.95⇥ 100⇥ 0.33

0.12
= 1.053⇥ 103 (42)

Eo =
�⇢gd2

�
=

1.95⇥ 100⇥ 0.32

10
= 1.755 (43)

Rayleygh-Taylor Problem
—————————– LECTURE 8 ——————————————–
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A rising bubble

N =
⇢�⇢gd3

µ2
=

2⇥ 1.95⇥ 100⇥ 0.33

0.12
= 1.053⇥ 103 (42)

Eo =
�⇢gd2

�
=

1.95⇥ 100⇥ 0.32

10
= 1.755 (43)
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Lx=1.0;Ly=2.0;gx=0.0;gy=-100.0; sigma=10; % Domain size and
rho1=2.0; rho2=0.05; m1=0.1; m2=0.005;    % physical variables
unorth=0;usouth=0;veast=0;vwest=0;time=0.0; 
rad=0.15;xc=0.5;yc=0.3;       % Initial bubble size and location

%-------------------- Numerical variables ----------------------
nx=32;ny=64;dt=0.00125;nstep=400; Nf=100;
maxit=200;maxError=0.001;beta=1.5;

16. We change the top of the file to modify the material parameters. The density of the ambient fluid is 
2 and the bubble density is 0.05. Similarly, the viscosity of the ambient fluid is 0.1 and the bubble 
viscosity is 0.005. Surface tension is 10 and gravity is -100, as for the simulation of the drop. In addition, 
we make the computational domain taller so that the bubble can rise for a longer distance. The tangent 
velocities on all four boundaries are zero. The bubble radius is 0.15 and it is initially located at x = 0.5 
and y = 0.3. We start by using a grid with 32 by 64 pressure control volumes and a time step of 
0.00125. We will follow the solution for 400 time steps, or up to time 0.5. For the pressure equation we 
specify an error of 0.001, and set the maximum number of iterations to 200, as before. 
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17. The bubble moves upward due to buoyancy, staying more or less spherical, quickly reaching a 
steady state velocity and leaving a significant wake. As it reaches the top it flattens slightly.
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The front, the velocity field, and the marker function
on three different grids at time 0.5 
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Grid 1: nx=32; ny=64; dt=0.00125; nstep=400; Nf=100;
Grid 2: nx=2*32; ny=2*64; dt=0.5*0.00125; nstep=2*400; Nf=2*100;
Grid 3: nx=4*32; ny=4*64; dt=0.125*0.00125; nstep=8*400; Nf=4*100;

18. We again repeat the simulation on three grids and top three frames show the front, the velocity 
field and the marker function for three different resolutions, 32 by 64, 64 by 128, and 128 by 256 grids, 
at time 0.5, when the bubble has collided with the top wall. Although the bubble shape is similar in all 
three frames, it is also obvious that there are slight differences, particularly between the first two 
frames. The three plots on the bottom show the area of the bubble, the distance of the bubble 
centroid from the bottom wall and the centroid velocity, versus time, for all three runs. The black line is 
for the lowest resolution and the red line is for the finest one. The mass conservation here is obviously 
not as good as for the drop, where we had to expand the vertical axis to see the difference between 
the different resolutions. It does, however, improve with increasing resolution and there are only minor 
differences in the curves for the centroid location and the velocities for the finer two grids.
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The Rayleigh-
Taylor 

Instability

19. The mixing of two fluids, as a heavy fluid initially placed above a lighter one, falls down and the 
light fluid rises, is a classical problem in computations of multifluid flows. Computationally it is fairly 
simple. We put heavy fluid in the top part of the domain and perturb the interface to initiate the 
motion. Experimentally it is more complex. In some cases the heavy and the light fluids are initially 
separated by a membrane, which is removed as quickly as possible, but in other cases the heavy fluid is 
initially at the bottom of a container that is accelerated downward, using devices ranging from rubber 
bands to rocket motors. 
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The Rayleigh-Taylor instability is one of the classical test 
problems for multiphase simulations. Initially a heavy fluid sits 
above a lighter one, but once the interface is perturbed slightly 
the heavy fluid and the light one trade places.

For this problem we need to change our code slightly:

• We change the boundary condition on the vertical walls to 
full-slip for the flow solver, and

• The front now stretches between the walls instead of being 
closed

• The boundary conditions for the front, where it meets the 
walls is simplified by assuming that the interface is flat there

20. To simulate the evolution of the Rayleigh-Taylor instability we need to make minor changes in the 
code. The interface does, in particular, no longer enclose an isolated blob, but extends from the left to 
the right boundary. We will assume that the evolution is symmetric and that the side walls can be taken 
to be full slip walls. This allows us to assume that the slope of the interface at the side walls is zero 
which simplifies the implementation of the boundary condition for the front.
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Making the vertical walls full-slip is a very minor change. 
We want the shear stress there to be zero, so the 
velocity gradient is zero and this is accomplished by 
putting the tangent velocity at the ghost point equal to 
the first tangent velocity inside the domain.

The changes to the front are also relatively simple. The 
biggest decision is whether there is a front point on the 
boundary or whether we let put the boundary between 
the first point and the second one?

Here we choose to do the latter, so that the first and the 
last points are ghost points outside the computational 
domains.

21. Making the vertical walls full-slip is a very minor change. We want the shear stress there to be zero, 
so the velocity gradient is zero and this is accomplished by putting the tangent velocity at the ghost 
points equal to the first tangent velocity inside the domain. The changes to the front are also relatively 
simple. Instead of forming a closed circle, it now stretches across the domain, from the left to right. We 
need to decide exactly how we handle the endpoints and here we use ghost points so the first point is 
outside the domain and the left boundary falls between the first and the second point. The right 
boundary is handled in the same way. 
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The changes in the code are relatively minor. First of all, we 
modify the physical and numerical parameters slightly and 
change the initial conditions:

%========================================================
Lx=1.0;Ly=2.0;gx=0.0;gy=-100.0;  sigma=5.0; % Domain size and
rho1=1.0; rho2=4.0; m1=0.01; m2=0.05;          % physical variables
unorth=0;usouth=0;veast=0;vwest=0;time=0.0; 

%-------------------- Numerical variables ----------------------
nx=32; ny=64; dt=0.00125; nstep=300; 
maxit=200; maxError=0.001; beta=1.5; Nf=100;

%-------------------- Initial Conditions -----------------------
r=zeros(nx+2,ny+2)+rho1;m=zeros(nx+2,ny+2)+m1; % Set density and viscosity
for i=1:nx+2,for j=1:ny+2;                                           % for the domain and the drop
  if(y(j)>1.2+0.1*cos(2.0*pi*x(i))), r(i,j)=rho2; m(i,j)=m2; chi(i,j)=1.0; end,  
end, end

22. Changes in the code are minor. First of all, we need to modify the physical and numerical 
parameters at the beginning of the code. We take Lx to be one and Ly to be two, as for the bubble 
simulation. gx is zero but gy is negative 100, the density of the heavy fluid at the top is 4 and the 
density of the light fluid at the bottom is 1. Similarly, the viscosity of the heavy fluid is 0.05 and the 
viscosity of the light fluid is 0.01. Surface tension is 5. The tangent velocities on the top and bottom 
boundaries are zero. We start by using a grid with 32 by 64 pressure control volumes and a time step of 
0.00125. We will follow the solution for 300 time steps, or up to time 0.375. For the pressure equation 
we specify an error of 0.001, but we also set the maximum number of iterations to 200. When we 
compute the relevant non-dimensional numbers, we will use the properties of the top fluid and take the 
width of the domain as a length scale. The initial conditions must be modified and we take the interface 
to run across the domain at y=1.2, perturbing it with a cosine wave of amplitude 0.2. Here we have 
hardcoded the location and perturbation of the interface but we could, of course, make those variables 
as we did for the droplet size and location.
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Then we need to change a few things
After finding the velocity, we add a line:

uf(2)=0; uf(Nf+1)=0; % Make sure the endpoint move along wall

After moving the points we change a line
xf(1)=-xf(2);yf(1)=yf(2);xf(Nf+2)=2*Lx-xf(Nf+1);yf(Nf+2)=yf(Nf+1);

After finding the marker function we add a line:
chi(1,:)=chi(2,:); chi(nx+2,:)=chi(nx+1,:); % Correct density on sides            

Before updating the velocities we modify the boundary conditions
v(1,1:ny+1)=v(2,1:ny+1);v(nx+2,1:ny+1)=v(nx+1,1:ny+1);

Before finding diagnostics we change a line
  uf(1)=uf(2);vf(1)=vf(2);uf(Nf+2)=uf(Nf+1);vf(Nf+2)=vf(Nf+1); % Front

After adding and deleting points we change the updating of the ghost points
xf(1)=-xf(2);yf(1)=yf(2);xf(Nf+2)=2*Lx-xf(Nf+1);yf(Nf+2)=yf(Nf+1);

Change the plotting slightly:
plot(xf(1:Nf+2),yf(1:Nf+2),'k','linewidth',3);pause(0.01)

23. Then we change the code to deal with the new situation. We add a line putting the horizontal 
velocities of the first and last front point inside the domain to zero, to ensure that they do not drift 
outside the domain. After finding the velocity of the front points we modify the line setting the value of 
the ghost points. On the side walls we add a line to set the density at the ghost points equal to density 
of the next interior point, since the interface moves. This is not strictly needed since these points are 
not used, but they will look better when we plot the marker. We change the line where the ghost 
velocities on the vertical walls are specified to impose full slip walls. Before computing the diagnostics 
we modify the line setting the ghost velocities for the front. And we modify the line setting the location 
of the front ghost points after we add and delete points. Finally we modify the plotting slightly to plot 
the whole front.
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Simulation of a 
Rayleigh-Taylor 
instability where a 
heavy fluid falls into 
a lighter one.

Nondimensional 
numbers based on 
the properties of the 
heavy fluid and d=1.
N=4.8 x 105 
Eo=60
ρt/ρb=4
µt/µb=5

A 32 by 64 grid.

24-1. Here we show the evolution of the Rayleigh-Taylor instability as computed on a 32 by 64 grid. The 
initial growth of the perturbation is very slow, but then it speeds up. The light fluid rising upward is 
generally referred to as a bubble and the heavy fluid falling down as a spike. This terminology becomes 
increasingly precise as the density ratio increases, but here, where the heavy fluid is four times denser 
than the light fluid the evolution is more symmetric, at least at the early stage. As the spike falls, its 
nose first becomes flatter as the pressure in the light fluid resists its motion and the rim is then pulled 
off, by the light fluid rushing into the upward moving bubble. These “arms” develop very quickly and 
consists of a drop connected to the rest of the heavy fluid by a thin filament. They are, in particular, 
much smaller than the bubble or the main part of the downward falling spike. The Rayleigh-Taylor 
instability exemplifies a major challenge in simulations of multifluid and multiphase flows. While initially 
everything is well behaved and it is easy to get a fully converged solution, at later time we see the 
formation of very small-scale features that are much smaller than the scales in the initial conditions.
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Simulation of a 
Rayleigh-Taylor 
instability where a 
heavy fluid falls into 
a lighter one.
Nondimensional 
numbers based on 
the properties of the 
heavy fluid and d=1.

N=4.8 x 105 
Eo=60
ρt/ρb=4
µt/µb=5

A 32 by 64 grid.

24-2. These small scales feature are so small that a grid resolution that was perfectly fine before their 
formation is now totally insufficient. For the single mode Rayleigh-Taylor instability these are, except for 
very high viscosities, unavoidable. High surface tension can also suppress them, but if we make the 
surface tension too high the interface becomes stable and the perturbation oscillates instead of 
growing.
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25-1. To check the convergence we examine the solution at two times on three different grids, using 32 
by 64, 64 by 128 and 128 by 256 pressure control volume inside the domain. At the earlier time, in the 
top row, we see that the three resolutions result in essentially identical solutions. At the later time, 
however, the differences are larger. The shape of the upward moving bubble is nearly the same, and so 
is the blunt disk like shape moving down into the light fluid. The shape of the “arms” shed from the rim 
of the heavy disk does, however, change with the resolution. This is a common problem in multiphase 
flow simulations. The flow often generates scales that are much smaller than the initial scales, and the 
small scales quickly become under-resolved. For fine enough grids we do, of course expect 
convergence since eventually viscosity and/or surface tension sets the smallest scales, but the fact that 
this can happen at orders of magnitude smaller scales than the initial setup often makes it difficult to 
produce a fully resolved solution. Although we will not discuss this issue here, it is a major one and one 
that is currently being actively examined. We can quantify the evolution is several different ways but 
here we do the simplest thing possible.
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25-2. In the top frame on the right we plot the maximum and the minimum of the interface versus time 
and see that those are essentially identical on all three grids. Below, we plot the total length of the 
interface versus time, and here we see that while the total lengths on the coarser grids are similar, the 
finest grid results in a shorter interface, as we expect from the interface shape shown on the left.
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The current code can easily be modified for many other 
problems, such as waves, bubbles and drops coalescing 
with each other or an interface, and more than one 
bubble or drop.

The current code is written assuming a single 
continuous interface. For complex problems with many 
bubbles or drops, where there are several unconnected 
interfaces, a more general interface data structure is 
generally preferred.

26.The thorough testing of a numerical code has several purposes. First and foremost we need to 
convince us, and often others, that the code is correct. Part of this can be done using benign 
parameters, where the solution should converge easily on a relatively coarse grid. This helps us 
establish that the method is correctly implemented, even if the method has difficulty with the initial 
conditions and the parameter values that we really want to simulate. A code that works for some 
parameter set also provides a path to managing more complex problems. We gradually change the 
physical parameters and when we run into problems, we change the numerical parameters, such as 
spatial and temporal resolution and maximum iterations, to see if we can get a solution. Even though a 
code has been thoroughly tested for one problem, it is usually necessary to repeat some of the tests 
when we apply it to a new problem, to establish the convergence properties and determine what 
resolution is necessary. 


