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1. Here we will develop a simple Navier-Stokes solver for incompressible flows of two fluids that have
different material properties. The code is developed in several steps, adding capabilities in small

increments.
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A simple method to solve the Navier-
Stokes equations for variable density

Start by advecting density using an
advection/diffusion equation

This density advection will later be
replaced by front tracking

2. The code uses explicit time integration, implemented as the so-called projection method, and a
regular structured staggered grid for a rectangular domain. We start by developing the code for flow
where the viscosity is constant and there is no surface tension, and the density, which also serves as a
marker to identify the different fluids, is updated by solving an advection-diffusion equation. The
diffusion is added for numerical purpose and is removed once we have introduced front tracking to

follow the interface between the different fluids.
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Navier-Stokes equations in integral form
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3-1. To find the flow we solve the Navier-Stokes equations. The Navier-Stokes equations can be written in
many forms, all of which can be used as a starting point for numerical approximations. Here we start
from the integral form of the equations, as obtained directly by applying the conservation laws of physics
to fluid flows. The differential form may be more familiar, but using the integral form keeps us as close to
the physics as possible and requires minimum number of assumptions. Applying the conservation of
momentum principle to a small stationary control volume tells us that the rate of change of momentum
in the control volume, the first term, plus the net inflow of momentum through the surface of the control
volume, given by the second term on the left, are equal to the sum of body and volume forces acting on
the control volume. The first term on the right is the net force due to the pressure, which acts normal to
the control surface, then we have a body force due to gravity, the third term on the right hand side is the

viscous force, and the last term represents other body force acting on the fluid.
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3-2. The last term will include the surface tension, but for now we leave it unspecified. We assume that
the flow is incompressible so its volume is conserved. For a control volume this means that the inflow
must balance outflow, or that the integral of the normal velocity over the control surface must be zero.
Incompressibility is a consequence of the density of each fluid particle remaining constant and for
multiphase flows, where the density of different fluid particles is different, this means that the advection
equation for the density must be included in the set of equations we need to solve. Finally, since we are
sometimes dealing with the continuous flow field and sometimes with discrete approximations we need
to establish a notation that distinguishes between those two. Here we use variables without a super or
sub script for the continuous variables, such as rho, p and bold u, for the density, pressure and velocity,

and variables with subscripts and superscripts for the discrete approximations.
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3-3. A superscript denotes a time level and a subscript denotes a discretization in space. We will use the
subscript h for an unspecified spatial discretization and i,j for variables discretized on regular structured

two-dimensional grids.
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The average value of each term, over the control volume:
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The Navier-Stokes equations are then:
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4. To simplify the notation we divide the integral statement of the momentum conservation by the
volume of the control volume and then define the average momentum, M, the average advection term,
A, the average pressure gradient, the average gravity force---average rho times g, the average viscous
term D, and the average integral of other forces f. Notice that we denoted the average pressure
gradient slightly differently than the other terms to emphasize the fact that the integral is the definition
of the pressure gradient in the limit of infinitesimal control volume. The momentum equation can now be
written in terms of these definitions, giving us the time derivative of the momentum equal to the
negative of the advection terms, and the sum of the forces. Similarly, will denote the average of the
conservation of volume integral as the divergence of the velocity since the divergence can be defined by

this integral as the volume goes to zero.



DNS of Multiphase Flows

The Time
Derivative

5. Because we have to solve several equations, the momentum equations along with the
incompressibility condition and the advection equation for the density, we need to decide exactly in

what order to solve the equations. To do that, we start by the time integration.

DNS of Multiphase Flows

Decompose the momentum into density and velocity
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The semi-discrete Navier-Stokes equations then become:
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6. The Navier-Stokes equations give us the time evolution of the momentum, but we need the velocity
and the density separately to be able to calculate the various terms on the right hand side. Thus we
assume that we can decompose the momentum into the product of the average density and the average
velocity, defined by integrals over the control volume. For very small control volumes where the density
and velocity are essentially constant this is obviously a very reasonable thing to do but for flows where
the density changes abruptly, this is a more questionable approach, and we will revisit this approximation
in later lectures. We now approximate the time derivative by a simple forward in time Euler
approximation, where the right hand side is computed at the current time. Here, superscript n denotes a
variable at the current time t and superscript n+1 stands for the variable at time t plus delta t. Notice
that we have not put any superscript on the pressure term because the pressure needs to take whatever

value required to enforce incompressibility at the new time, n+1.
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To integrate in time we approximate the time derivative by
a simple first order in time forward approximation:
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Then we split it into two steps:
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7-1. We start by assuming that we have already updated the density so rho at time level n+1 is given.
However, even if the new density is given, we cannot use the momentum equation as written to find the
new velocity because we do not know the pressure. For incompressible flow this is a standard problem.
We have two equations for the velocity, the momentum equation and the incompressibility condition,
but no equation for the pressure. To deal with this we use the so-called projection method, where we
first find a preliminary velocity field by ignoring the pressure and then determine the pressure required
to make the velocity field incompressible. That is, in the second step we project the velocity onto the
space of incompressible velocity fields. Thus, the name. The semi-discrete momentum equation is
therefore split into two parts by adding and subtracting a term including a temporary velocity, denoted
by u star. Here we assume that the temporary velocity is multiplied by the new density, but other choices

are possible.
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To integrate in time we approximate the time derivative by
a simple first order in time forward approximation:
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Then we split it into two steps:

7-2. The first step gives us the temporary velocity using everything on the right hand side except the
pressure and the second step corrects the temporary velocity by adding the pressure gradient. Adding
step one and two, eliminating the temporary velocity, gives us the semi-discrete momentum equation.
The pressure is still unknown, but it must be determined in such a way that the velocity at time level n+1

is incompressible, or divergence free.
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DN of Multiphase Flows 8. To find an equation for the pressure, we take the divergence of the equation for the corrected velocity
and use the conditions that the new velocity, at time level n+1, should be divergence free. The result is
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Y 9 9 last step using an equation that relates the pressure to the divergence of the predicted velocity field. If the density is a
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and using corrector the Laplacian of the pressure is equal to the divergence of the predicted velocity. For variable density
usl equation and the . .. .
I e flows the density must stay where it is, and this leads to a more complex non-separable pressure
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we obtain the pressure equation
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equation where the pressure gradient is multiplied by one over the density, which varies in space.
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Discretization in time

1. Update the marker function to find new density and viscosity

2. Find a temporary velocity using the advection and the
diffusion terms only:
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3. Find the pressure needed to make the velocity
field incompressible

| 1 ;
7 (thp)) = Evh -y,

4. Correct the velocity by adding the pressure gradient:
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9. We now have a strategy for using the discrete incompressible Navier Stokes equations to advance the
velocity in time. We start by updating the density. Then we find a temporary velocity, u star, using the
advection term and the forces, except the pressure. Then we take the divergence of this temporary
velocity and use that as a source term for an equation for the pressure. The source term increases the
pressure locally where the divergence is negative and decreases it where the divergence is positive.
Although the adjustments in pressure are made locally, they depend on the pressure nearby, so we have
to solve for the pressure everywhere simultaneously. Once the pressure has been found, we can correct

the temporary velocity by adding the pressure gradient.
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Spatial
Discretization

10. So far we have only been concerned with approximating the time derivative. To approximate the flow
field we need to divide the domain into finite size control volumes and approximate the various surface

and volume integrals.
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Select rectangular

11-1. We can, in principle, use control volumes of any shape, but here we will define them using a regular

structured grid. We divide the domain by horizontal and vertical lines, parallel to the x and the y-axis,

control volume defined separated by delta x in the horizontal direction and delta y in the vertical direction. The flow field is
Volu 1
by a structured grid. approximated by discrete variables and we assume that a variable identified with the intersection of the
Here we will assume i-th vertical and j-th horizontal grid line is the average value for a control volume centered at the
ﬁ.j+1 f;+1.;+| . . . .
‘h"’l“ all the Ciﬂtm' intersection, of size delta x by delta y, as outlined by the red rectangle. Here we show delta x and delta y
volumes are the same
size being equal, but that is often not the case. The benefits of using a regular structured grid, in addition to
7,Ay,7 g f;ﬂ./ . . . . . fe .
For second order f,‘./ the simple shape of the control volume, is the straightforward identification of each control volume and
approximations the y its neighbors.
average value is a Ax 9
good approximation i
for the value in the
center *
DNS of Multiphase Flows 11-2. We number the gridlines, usually starting from the left for the vertical ones and the bottom for the
horizontal ones, and if i refers to the i-th vertical grid line and j to the j-th horizontal grid line, then the
ng:?glr\?;t:;geuéﬂined intersection of the grid lines is at the point (i,j). In the same way, the next point to the right is (i+1,j), the
by a structured grid. next point above is (i,j+1), and so on. In the slide the control volume centered at (i+1,j+1) is also outlined
Here we will assume p in red.
that all the control Jigm i
volumes are the same
size
N Frs
For second order “’
approximations the y
average value is a Ax
good approximation i
for the value in the

center
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12-1. Although we may intuitively assume that we should select the same control volume for all the
variables that is not necessary. Indeed, the realization that we do not have to do so is at the very core of
the so-called staggered grid arrangement of the control volumes. Although the staggered grid appears
somewhat confusing at first, it is actually a brilliant idea that leads to relatively simple and robust
numerical approximations. It is, however, important to keep the location of each variable straight and it is
essentially impossible to do so without sketching the grid and the control volumes. Thus, draw the grid
could perhaps be called the zeroth law of staggered grids. The idea behind the staggered grid is best
explained by starting with the control volume for the pressure and the volume conservation equation.
The pressure is adjusted to force the velocity to be divergence free. If there is net inflow into a control

volume we increase the pressure to push the fluid out and if there is a net outflow we lower the pressure

AvAy (Ayl s — s ) + Aty o — iy ) = O to suck the fluid back in.
DNS of Multiphase Flows 12-2. Thus, we need to find the divergence or net out or inflow for a control volume around the pressure
) point. We therefore pick a control volume centered at the pressure point with a left boundary between
Start with the control | | |
volume for the pressure.  — Pt — et —Pigss —Hisiajos ~Piutjo the i-1,j and the i,j point, a right boundary half way between the i,j and the i+1,j points, a bottom
For incompressible flows .. .. . .. .. .
the net inflow must be y | | boundary between the i,j-1 and the i,j point and a top boundary between the i,j and the i,j+1 point. The
zero net inflow into the control volume is the integral of the normal velocity over the surface of this control
é%umds -0 A e i S (T L volume. The inflow through the left boundary can be approximated as the normal velocity at the mid
JS
point between i-1,j and i,j times the height of the control volume, or u i-1/2,j times delta y, the inflow
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through the bottom is the velocity at the midpoint between i,j-1 and i,j times the width of the control
volume or v i, j-1/2 times delta x and the outflow through the right and the top boundaries are u i+1/2, j

times delta y and v i,j+1/2 times delta x, respectively.
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12-3. Thus, the discrete incompressibility conditions state that the difference between the u-velocity at
i+1/2,j and i-1/2,j times delta y plus the difference between the v-velocity at i,j+1/2 minus the v-velocity
atij-1/2, times delta y, everything divided by the volume delta x times delta y, is equal to zero. Or, in
physical terms, the difference between the inflow and outflow through the horizontal boundaries must

be balanced by the difference between the inflow and outflow through the vertical boundaries.
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Define separate control volumes for each velocity
component, shifted up for the vertical velocity and to the
right for the horizontal velocity— Staggered Grid
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13. The important thing so far is that when we apply the incompressibility condition to the pressure
control volume, we need the velocities half way between the pressure points. If the velocity was available
at the pressure points we could, of course, interpolate the velocities at the half points but there is a
better alternative, where we find the velocities at the edges of the pressure control volume directly. To
do so we define a control volume for the u-velocity by shifting the pressure control volume to the right,
centering it at (i+1/2,j) and then define a different control volume for the v-velocity by shifting the
pressure control volume up, centering it at (i,j+1/2). This puts the pressures on the boundaries of the
velocity control volumes and, as we will see shortly, this is exactly where we need them. Unfortunately
not all variables are stored where we need them, so in some cases will need to interpolate. We will use
linear interpolations, which is also the reason that we can generally assume that the value at the center of

each control volume is equal to the average value over the control volume.
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Predict the
Velocities

14. We are now ready to write down the discrete form of the Navier-Stokes equations by evaluating

every term on the right hand side of the semi-discretized momentum equation.
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We now examine each termini in the equations in detail and
derive a discrete approximation, assuming 2D flow:

" 1 \n .
u, = T <P»’:“»’x + At(-Aj + pjig + D + f»,')) '"‘“wm' v
h
In component form:
—Pij—Umipj —Pisj
N YNEUN] (P
F/2g = TOmT Ty 2 A 4172,
1 . n n h/ 1727 Vi
51+ P10+ (D) + ()i >, |
1 1 —u; \/z,,u—l’,u
v Lo g N
o= o 30 s (- ()t
1 n n n
5+ 2297 2+ (Dy i T )T a2 } Vijein ——
Here we have used linear interpolation where quantities are not
defined, such as for: — Wiy = D=,

|
n+1)

ntl n+1 +1
Pifiye, = 2(/),“] +pi7") and PPl = (m“ +0,

i+1,j4112

Uis1p el

tiv1s

25 7

15. We start by assuming that the density at n+1 has already been found and that it is stored at the
pressure points. The preliminary velocity then is given by the momentum at the n-th time level, the
density times the velocity, plus delta time times the advection, gravitational, and viscous terms plus the
body force, all divided by the density at the new time step, since we are using the conservative form of
the momentum equations. We write this equation for the u-velocity at point i+1/2, j and for the v-velocity
at the i,j+1/2 point. Each term is evaluated at the center of the control volume for each velocity
component, and since the density is not known at the velocity points, we interpolate linearly by taking

the density at the velocity points as the average of the density of the pressure points.
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The components of the gravitational term
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16. In the component form of the equations on the preceding slide we discretized the gravitation term
by multiplying the density at the center of the velocity cells, found by linear interpolation, by the
appropriate component of the gravitation vector. We also multiply and divide by the volume of the
control volume, so those cancel. For now, we leave the body force unspecified and denoted the

averages over the appropriate velocity volumes by f_x and f_y.
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DNS of Multiphase Flows 17. The advection terms are evaluated by integrating over the boundaries of the control volumes for the
Discrotization of the advection terms: u and the v velocities and dividing by the area of the control volume to get the average over the control
. volume. For the x-component we evaluate the integral by first computing the difference in the out flux of
A=y }i”“‘“ m)ds e s u-momentum through the right hand side of the control volume minus the influx through the left hand
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DNS of Multiphase Flows 18. The velocities and densities at points where they are not defined are found by interpolation. Thus,
the u velocity ati +1, j is found as the average of u at i+3/2,j and i+1/2,j; the u velocity at i,j is found as
Advection terms—Detailed discretization - Yt the average of u at i+1/2,j and i-1/2,j; and so on. Notice that the velocities on all the sides must be found
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19. The advection term for the v velocity is found in a similar way by interpolating the velocities at the

midpoint of each side and the density for the left and right side.
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The diffusion term is:
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20. To find the diffusion term we integrate the viscous stresses over the boundaries of the control
volume. We denote the deformation tensor by boldfaced capital S and then take the dot product of S

and the normal vector on each side. Since the boundaries of the control volume are parallel to the

In component form the rate of deformation | Vet coordinate axis, the normal vector on each side has only one non-zero component and only one
tensor for two-dimensional flow is: ] ! component of S survives the dot product. Thus the integral over the vertical sides for the u-velocity
S = Vut (Vo) — ( oot ”’) component includes only S_11 and the integral over the top and bottom involve only the off-diagonal
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For the horizontal velocity the integral is:
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DNS of Multiphase Flows 21. The derivatives of the velocities can be approximated by the midpoint rule in a straightforward way.
) . The integral over the vertical sides is twice the difference between the x derivatives of the u-velocity on

Using the midpoint rule for each component:
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they are defined and similarly, for the mid point of the horizontal boundaries we need the u-velocity
above and below the point, again exactly where it is defined, and for the x derivative of the v velocity we

need the values to the left and the right, right where they are defined.
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Similarly for the vertical velocity:
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22. For the v-velocity diffusion term the integral over the top and bottom includes the S_22 term and the
integral over the sides involves the S_21 term, which is, of course equal to the S_12 term. The integral is
approximated by the mid point rule and the derivatives by centered differences, using the velocity

components exactly where they are defined.
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Since the viscosity is constant, we can simplify the viscous
terms slightly, using the incompressibility condition

23. When the viscosity is constant we can simplify the diffusion terms slightly by using that the flow at
time n is incompressible. The derivation is left as an exercise, but the viscous terms reduce to the sum of
the standard finite difference approximations for the second derivative of the velocity components.
Although we use this simplification in the first versions of the code, to make it as short and readable as
possible, we note that in general the viscosity of the different fluids is different so in later versions of the

code we will have to use the full viscous terms.
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Collecting the terms, the predicted velocity is:
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24. Gathering the terms we find that the predictive velocity is given by the momentum at time n plus
delta t times the terms in the red curly brackets, consisting of the advection terms and gravity in the first
three lines plus the viscous terms and other body forces in the last term. Since we are working with the
equations in conservative form and it is really the momentum that we are updating, the whole right hand

side, inside the black curly brackets, must be divided by the density at the new time.
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The code to find the predicted velocities:

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity

ut(i,j)=(2.0/(r(i+1,j)+r(i,j)))* (0.5*(ro(i+1,j)+ro(i,j))*ui,j)+ dt* (...

-(0.25/dx)*(ro(i+1,j)*(u(i+1,j)+u(i,j)) A2-ro(i,j)*(u(i,j)+u(i-1,j))A2) ...

-(0.0625/dy)*( (ro(i,j)+ro(i+1,j)+ro(i,j+1)+ro(i+1,j+1))*...
(u(i,j+1)+ui,p)*(v(i+1,)+v(i,j) ...

-(ro(i,j)+ro(i+1,j)+ro(i+1,j-1)+ro(i,j-1))*(u(i.j)...
+U(i,j-1))*(v(i+1,j-1)+v(i,ji-1))) ...

+ 0.5%(ro(i+1,j)+ro(i,j))"gx ...

+mO*((u(i+1,j)-2*u(i,j)+u(i-1,))/dx 2+ (u(i,j+1)-2*u(i,j)+u(i,j-1))/dy"2)) );

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity
Vi(i,j)=(2.0/(r(i,j+1)+r(i,j))) *( 0.5*(ro(i,j+1)+ro(i,j) *v(ij)+ dt* ( ...
-(0.0625/dx)*( (ro(i,j)+ro(i+1,j)+ro(i+1,j+1)+ro(i,j+1))*...
(u(i,j)+u(ij+1))*(v(i,j)+v(i+1,j) ...
- (ro(i,j)+ro(i,j+1)+ro(i-1,j+1)+ro(i-1,j))*...
(u(i-1,j+1)+u(i-1,)*(v(i,j)+v(i-1,) ) ...
-(0.25/dy)*(ro(i,j+1)*(v(i,j+1)+v(i,j) A2-ro(i,j)* (v(i,j)+Vv(i,j-1))"2 ) ...
+ 0.5%(ro(i,j+1)+ro(i,j))*gy ...
+mO*((v(i+1,j)-2*V(i,j)+v(i-1,j))/dx 2+(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy"2)) );
end,end

25. The code to update the velocities consists of loops over the velocities. As we will see when we grid
the entire domain, the size of the grids for the different velocities can be slightly different so generally
we use two separate loops, one for the u-velocity and another for the v-velocity. In both loops the
predicted velocity is the momentum at time n plus delta t times parenthesis that contain fist the
advection term, then the gravity term, and finally the diffusion term, since here we leave out the extra
body force. We have attempted to make the code essentially the same as the discrete version of the
equations as written in the previous slide. The reddish patch shows the black and red curly bracket and

the yellowish patch shows the advection terms.




